Some Theorems on Hamiltonian Graphs

Faculty Incharge:

Adil Mudasir

Dirac's theorem:

Merrim

If h is a simple graph with n(7,3) vernices and if $d(v) > \frac{n}{2}$ for each veryo v, then h is stumitonism.

prouh By contradiction

Let a be such a counter example to the theorem

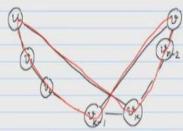
So that no graphs on n vertices with more edges

thum a is also a counter example. Let u and

to be two non-adjacent vertices of a. Then there

is a Hamiltonian path joining u and verina.

Thus is a contradiction; thus a must be tunilmin.



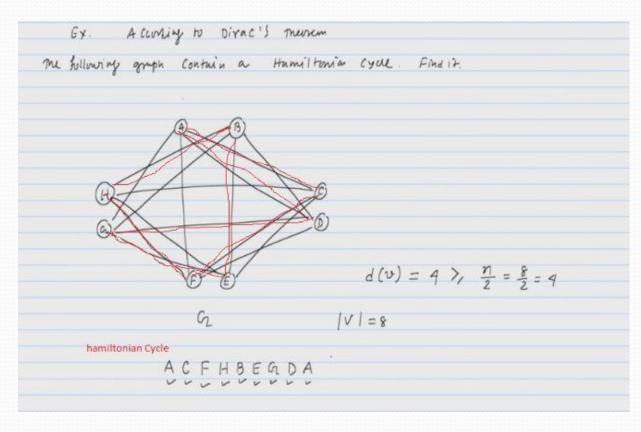
Let $d(u) = (R^2), \frac{n}{2}$.

Now we prove that if u is adjacent to v_R then v_{R-1} Cannot be adjacent to v_R .

If possing, the let v be adjacent to v_{R-1} .

Then we have the Humiltonian cycle $v_{R-2} \cdots v_{R-1} v_{R-1} \cdots v_{R-1} v_{R-1} \cdots v_{R-1} v_{R-1} v_{R-1} \cdots v_{R-1} v_{R-1}$

Example on Dirac's theorem:



Pandy/a the areas

joining u and 2.

Theorem (Bonky)

Let G be a simple graph on n (7,3) vernices

Suppose u, v & v and Such that (u, v) & E and

d(u) + d(u) 7, n. In this case

G is Humiltonian iff G + (u, v) is Hamiltonian.

proch => G is Humiltonian than obvious a+(u, v)

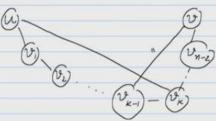
is Humiltonian.

& Given that G + (u, v) is Hamiltonian

we need to prove that G is Hamiltonian.

Suppose G is not Humiltonian.

There is a Hamiltonian path / Spanning path in G

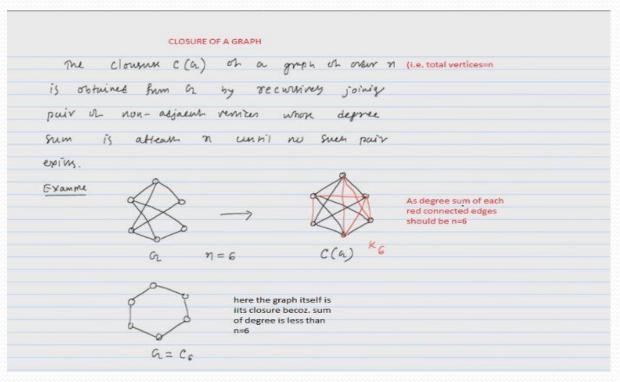


If u is adjacent to v_K , then v cannon be adjacent to v_{K-1} . Let d(u)=K.

So v is not adjacent to atteam v of me v_{K-1} vernices.

Thus v_{K-1} v_{K-1} v

Closure of a Graph



Theorem: Closure of a Graph Vs. Hamiltonian Graph

h)	A	Subr	13	Herm	itmin	ith	its	clos	usse is
1	Humilton	nian .							
pw	wh.	a	is	Hamil	tomia	TH.	C +	(u,v) is
		Hu	mil ton	jon -					
	d(u)+						d(u) >, n		
					(becoz. of closure of graph				
			property)						
To	-ent	ubulh	a	groups		H	umiltz	nian,	it is
Sut	hicien	4	M	we	Shen	,	man	汧	closure
i3	Comm	cte.							
11	the	clo	me	04 0	gn	p4	is	Comp	resc
	h the		(Clos		raph is	always	comple	ete as v	we know)
0	G 13	Hu	milton	vian .					